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 Statistical Science

 1990, Vol. 5, No. 4, 465-480

 On the Application of Probability Theory to
 Agricultural Experiments. Essay on
 Principles. Section 9.
 Jerzy Splawa-Neyman

 Translated and edited by D. M. Dabrowska and T. P. Speed from the Polish original, which
 appeared in Roczniki Nauk Rolniczych Tom X (1923) 1-51 (Annals of Agricultural Sciences)

 Abstract. In the portion of the paper translated here, Neyman introduces a
 model for the analysis of field experiments conducted for the purpose of
 comparing a number of crop varieties, which makes use of a double-indexed
 array of unknown potential yields, one index corresponding to varieties and
 the other to plots. The yield corresponding to only one variety will be
 observed on any given plot, but through an urn model embodying sampling
 without replacement from this doubly indexed array, Neyman obtains a
 formula for the variance of the difference between the averages of the
 observed yields of two varieties. This variance involves the variance over
 all plots of the potential yields and the correlation coefficient r between the
 potential yields of the two varieties on the same plot. Since it is impossible
 to estimate r directly, Neyman advises taking r = 1, observing that in
 practice this may lead to using too large an estimated standard deviation,
 when comparing two variety means.

 Key words and phrases: Field experiment, varieties, unknown potential
 yields, urn model, sampling without replacement, correlation.

 [Numbers in brackets correspond to page numbers
 in the original text.]

 I will now discuss the design of a field experiment
 involving plots. I should emphasize that this is a task
 for an agricultural person however, because mathe-
 matics operates only with general designs. In design-
 ing this experiment, let us consider a field divided into
 m equal plots and let

 Ul, U2i, * , Um

 be the true yields of a particular variety on each of
 these plots. If all the members Ui are equal, each of
 them may be called the average yield of the field.
 Otherwise the average yield may be thought of as the
 arithmetic mean

 x i-1 ui

 a=m  m

 D. M. Dabrowska is Assistant Professor, Division of
 Biostatistics, School of Public Health, University of
 California, Los Angeles, California 90024-1722. T. P.
 Speed is Professor and Chair, Department of Statistics,
 University of California, Berkeley, California 94720.

 The yield from the ith plot measured with high
 accuracy will be considered an estimate of the num-

 ber Ui.
 If we could repeat the measurement of the yield on

 the same fixed plot under the same conditions, we
 could use the above definition of the true yield. [See
 the Introductory Remarks for a few comments on
 Neyman's notion of true yield.] However, since we can
 only repeat the measurement of a particular observed
 yield, and this measurement can be made with high
 accuracy, we have to suppose that the observed yield
 is essentially equal to Ui, whereas differences that
 occur among yields from various plots should be at-
 tributed to differences in soil conditions, especially
 considering that low and high yields are often clus-
 tered in a systematic manner across the field.

 To compare v varieties, we will consider that many
 sequences of numbers, each of them having two indices
 (one corresponding to the variety and one correspond-
 ing to the plot):

 Uil, Ui2, * , Uim (i = 1, 2, ., v).

 Let us take v urns, as many as the number of varieties
 to be compared, so that each variety is associated with
 exactly one urn.

 465
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 AGRICULTURAL EXPERIMENTS 467

 In the ith urn, let us put m balls (as many balls as
 plots of the field), with labels indicating the unknown
 potential yield of the ith variety on the respective
 plot, along with the label of the plot. Thus on each
 ball we have one of the expressions

 (13) Uil, Ui2, *-, Uik, * *, Uim

 [291

 where i denotes the number of the urn (variety) and k
 denotes the plot number, while Uik is the yield of the
 ith variety on the kth plot.

 The number

 k=1 Uik
 ai =I

 m

 is the average of the numbers (13) and is the best
 estimate of the yield from the ith variety on the field.

 Further suppose that our urns have the property
 that if one ball is taken from one of them, then balls
 having the same (plot) label disappear from all the
 other urns.

 We will use this scheme many times below and will
 call it the scheme with v urns.

 If we dealt with an experiment with one variety, we
 would have a scheme with one urn. In this case,
 expressions denoting yields will not have a variety
 index.

 The goal of a field experiment which consists of the
 comparison of v varieties will be regarded as equivalent
 to the problem of comparing the numbers

 a,, a2 , ..., a.

 or their estimates by way of drawing several balls from
 an urn.

 The simplest way of obtaining an estimate of the
 number ai would be by drawing K balls from the ith
 urn in such a way that after noting the expressions on
 the balls drawn, they would be returned to the urn. In
 this way we would obtain K independent outcomes of
 an experiment, and their average Xi would, based on
 the law of large numbers, be an estimate of the math-
 ematical expectation of the result of our trial. Let x
 denote a possible outcome of the experiment consist-
 ing of drawing one ball from the ith urn. [In modern
 terminology, lower case x, with or without subscripts,
 denotes a random variable, and upper case X the
 corresponding realized values.] We shall calculate Ex.
 Since the probability of drawing a ball from the ith
 urn is the same for all balls, and equal to 1/m, and
 since all possible results of the trial are
 [30]

 contained in the sequence (13), so of course

 1 m
 E x = - Ui = a.

 and the average of the results of the K trials would be
 an estimate of ai.

 Unfortunately in practice, returning the balls to the
 urns cannot be carried out. We are obliged to sample
 without replacement.

 Let x, *. ., XK; X1, X2, *.., XK be the possible and
 true outcomes, respectively, of K trials carried out in
 this way. Let us assume, as is often the case in practice,
 that the sequence (13) contains numbers that do not
 differ greatly from one another and so may be consid-
 ered equal. We can group the sequence in such a way
 that, in the first group, we put all the smallest numbers
 Vi1, there being mp1 such numbers, in the second class
 the next smallest of the remaining numbers, whose
 common value is Vi2 and whose number is Mp2, etc.

 In this way we replace sequence (13) by

 (14) Vil, Vi2, ... * ,Vi

 representing possible outcomes of the trial where the

 probability that the outcome of the first trial is Vik
 iS Pk-

 Let us assume that on the first ball drawn we have

 the number Vik. What is the probability of the out-
 come of the next trial?

 First of all, the urn contains one fewer balls. Fur-

 ther, the number of elements in the kth class of (14)
 is reduced by one. Therefore the probability p' that
 the outcome of the second trial is equal to Vir, where
 r - k turns out to be

 p _1 =MP + Pr Pr =r+

 whereas the probability of the result Vik in the same
 trial

 [31]

 is

 1 mPh-i _ i-Pk
 Pr Pk

 In the end, after K -1 trials being carried out in the
 same way, we will find the probability PK-' that the
 outcome of the Kth trial is Vik, where Vik has not been
 drawn so far, is equal to

 K-1 MPk (K - 1)Pk

 mr-K+1 mr-K+1

 and the probability psT ' that a number Vi, which has

 been drawn 1 times previously, is equal to

 K1 _mP,- + -Ps + m- 1 rn M- K + 1 Mn-K +

 We see that knowledge of the outcomes of preceding
 trials has an effect on the probability of outcomes of

This content downloaded from 
�������������85.229.22.38 on Sun, 29 May 2022 20:59:43 UTC�������������� 

All use subject to https://about.jstor.org/terms



 468 J. NEYMAN

 subsequent trials, so that trials conducted in this way
 are not independent. If we assume that the number m
 is very large in relation to K, so that K/(m - K) iS
 negligible in comparison with the probabilities ps, then
 it follows from the above formulas that information

 about previous trials will not affect probabilities of
 subsequent trials. Therefore the trials will turn out to
 be independent, and we will be able to apply the law
 of large numbers, and our definition of a true yield,
 and along with it known formulas from probability
 theory. If each of the' v varieties is sown on K plots,
 then m = VK and the condition for the independence
 of experiments will be that the ratio 1/(v - 1) is small,
 in other words, the number of varieties v to be com-

 pared is large.
 Should we draw from this the conclusion that in the

 case where the number of varieties is small, probability
 theory cannot be applied?

 [32]

 Of course not. It follows from previous considera-
 tions, however, that for small v or m the application
 of the common formulas should be justified in a man-
 ner different from that which we have just described,
 or that these formulas should be modified.

 I will derive new formulas below. I will mention
 here a certain misunderstanding which is frequently
 repeated in the agricultural literature, whose expla-

 nation is connected to the above argument.

 This misunderstanding consists in the unjustified
 assertion that probability theory can be applied to
 solve problems similar to the one discussed only if the
 yields from the different plots follow the Gaussian law.

 This assertion arose because, consciously or uncon-
 sciously, a different framework was used from the one
 mentioned above when applying probability theory.

 More precisely, the yields from different plots were
 considered as independent measurements of one and
 the same number-the true yield of the variety on the
 field-and the measurement was assumed to be sub-
 ject to errors in the sense of Laplace. To justify this
 framework, experiments were carried out consisting
 of sowing a large number of identical plots with a
 single variety, and it was investigated whether the
 yields followed the Gaussian law, as would be true if
 the framework above reflected experimental practice.
 (I will not discuss in detail here the meaning of agree-
 ment with the Gaussian law; the reader should refer
 to publications devoted to this topic.) Such experi-
 ments had both positive and negative results, and in
 those cases where positive results were questionable,
 the discrepancies were justified as being an unusual
 event. Even among the greatest optimists, I found
 words suggesting doubts. [Here Neyman refers to
 Gorskiego and Stefaniowa in the 1917 volume of the
 same journal.]

 We have to say that in many cases the yields do not
 follow the Gaussian law. This is highly likely

 [33]

 a priori. Further, the consistency with the law of
 random errors should not justify a framework which
 is based on an assumption of independence of the

 measurements. In discussing this matter we will

 quickly get to a discussion of the assumption and
 constraints on the number of plots on the field or on
 the number of varieties compared.

 In this way we conclude that consistency with the
 Gaussian law is not sufficient to justify the application
 of known formulas, and even this (consistency) is open
 to doubt.

 The proposed framework even makes it superfluous,

 since it is enough to assume that our measurements

 are independent, and for that we need a large number
 of plots on the field.

 I will now discuss the case where the ratio

 K

 m - K

 is not so small as to be negligible, and so the experi-
 ments cannot be considered independent. Consider
 the design with one urn. First of all we have to say
 that the arithmetic mean from K measurements may
 be considered an estimate of the mean

 z -1 Ui
 a= m

 m

 [The notation here is slightly confusing. There is no
 connection between the subscript i on Ui and that on
 the random variable xi. Indeed the latter subscript is
 superfluous at this point, although the author un-
 doubtedly has the ith urn in mind; cf. (16) and (17)
 below.] For that, as follows from Tchebychev's theo-
 rem, it is enough that

 A2= E(xi - a)2

 tends to zero as K -- 00. [,u2 is a generic expression for
 variance (cf. the modern use of a2), here of the random
 variable xi which is the average of K trials.]

 We calculate 1U2:

 1K 2Ex? -a2 = X ++ 2 XikXir - a2,
 K _k=1 k,r

 where the sum E XikXir runs over all nonidentical
 expressions of the type XikXir with k A r. [Here Xik
 is the random variable corresponding to the kth
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 AGRICULTURAL EXPERIMENTS 469

 of the K trials and xi = (1/K) K=l Xik.] Of course

 2...limTT22 2 1 (k=+ Uk + 2(K -1) 2UkUr! -a

 [34]

 m - K SSk ( Uk - a) ) m - K 2
 = ~ ~ ~ ~~~ - =U. K(m-1) m K(m-1) u-

 Dividing this expression in the numerator and de-
 nominator by m, and remembering that m > K, we
 conclude that

 limM21 = lrn 1- (K/rn) _.
 K- 8 K(1 -(1/m))

 Thus in this case the arithmetic mean of several
 outcomes of the trial may be regarded as an estimate
 to the expected value a.

 Let us make another comment. It is possible that,
 apart from the arithmetic mean just discussed, there
 exists an different function F(X,K) of the results of the
 K experiments for which EF(X,K) = a, which could also
 be regarded as an estimate of the number a. It is also
 possible that the standard deviation of the function F
 is smaller than ,u. In this case, as it follows from the
 law of large numbers, F(X,K) may be associated with a
 better estimate of a than the arithmetic mean. There-
 fore we can look for the function F(X,K) which will give
 the best estimate.

 We shall consider a linear function

 F(X,K) = XlXl + X2x2 + *-- + XKXK-

 [In this equation and what follows the random vari-
 able corresponding to the ith and kth of the K trials
 are now denoted by xi and xk respectively. Neyman
 refers to Markov (1913) at this point.] In order that a
 number F(X,K) could be considered as an estimate to a,
 it is sufficient that

 EF(X,K) = E Z XkXk = a
 k-i

 i.e.,

 K

 SAi= 1.
 i-1

 In order for this estimate to be the best it is necessary
 that

 M2 = E(F(X,K - a)2

 be a minimum.

 [35]

 Of course

 M 2=E EXi(xi-a)]

 K

 - XXE(xi -a)'+ 2 XiXkE(xi-a)(xk-a)
 i-i i,k

 a u [ m _ 1 E AXiXk],
 M-li,k

 since

 E( _ )2 z*k=, (Ui a) 2 2 IE(xi - a2 -X =iU-a) 2-2;
 m

 E(xi - a)(xk- a)

 2 i=l 1 k=i+l1 ( Ui -a) ( Uk- a)
 m(m-1)

 m(m-1) mr-

 From the identity

 K

 SAi= 1,
 i-1

 it follows that

 2 E XiXk = 1 - i
 i,k i-

 so

 M2-= 0U(m K 1
 mn-i

 a2 m - K + m >i,k (Xi Xk ]
 K(m-1)

 is smallest when

 Xi XlA, (i = 2, 3, * ,K )

 [36]

 i.e.,

 1i = , (i= 1,2, ** *,K)
 K

 F) = i- Xi m - K
 K K(m -1)

 We see that for the case considered, the arithmetic
 mean of K experiments is the best estimate of the
 number a.
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 470 J. NEYMAN

 An estimate of the standard deviation ,u will be
 found by calculating [The text now reverts to the
 notation described on Neyman's page 34.]

 E(xik - X,)2 = XE(K k Xk Z Xi,
 K K k

 (K - 1)m 2 (K -l)m 2
 K(m1) rn -K

 where

 z Xir = X Xir - Xik.
 k r=1

 Therefore the estimate of the standard deviation of
 the arithmetic mean can be denoted by ,u"' whose
 square is equal to

 M= rnK K k1 (Xik Xi)2

 (16) m(K - 1) K
 m-K___ 2 M K

 m(K-1)

 [Here Xik is the kth observed outcome, k = 1, ..., K
 and Xi = (1/K) -1 Xik-]

 This formula should be used instead of formula (6),
 when K is not negligible compared with m, as is most
 common. [Formula (6) is analogous to (16), but was
 derived under the assumption of independence of the
 observations, and so is without the factor (m -K )/m.]

 On the other hand, if the experiments are conducted
 with replacement the formula (8) [Formula (8) gives the
 usual unbiased estimate of the variance based upon a
 sequence of independent random variables with common
 mean and variance. For the next few formulas, xi, Xk etc.
 are members of a set of v independent random variables

 with expectation a, variance 1 2, and x0 = (1/v) k=l Xk-I
 remains unchanged in this case since [35]

 E(x,- x0)2 = (-xi - EX Xk)

 v-

 [37]

 Since the numbers xi and Xk are independent,
 therefore

 EXiXk (EXk) = a 2

 Thus

 (Xi-O)2 = Ei 2) = ^V (xi ~(IEx? - a 2
 VV

 v --

 V K(M- 1)U

 and as an estimate of /i2 we may use

 ii 2 = Va2

 V

 In the case when the Xi follow the Gaussian law, multi-

 plying it' or ,u "' by 0.67449, we get E, an estimate of the
 probable average error. [E is thus an estimate of the

 inter-quartile range. The expression au2 just above was

 defined earlier in the paper, and is the usual biased

 estimate of a population variance, whereas / "2 is the
 corresponding unbiased estimate.]

 It should be emphasized that the problem of determin-
 ing the difference between the yields of two varieties

 becomes more complicated in this case. Let us consider

 the scheme with v urns. [From now on, xi and xj are the
 averages of K trials corresponding to varieties i and j,
 sampled as in the scheme with v urns.] It is easy to see

 that

 E(x, - xj) = ai - aj,

 so that the expected value of the difference of the partial

 averages of yields from two different varieties is equal to

 the difference of their expectations. It can also be deter-

 mined that this difference is an estimate of ai - aj, but
 the expression for the standard deviation becomes more
 complicated:

 AX, i-x= E[xi - xj- (ai - aj)]2

 = E(xi - ai)2 + E(xj - aj)2

 - 2E(xi - ai)(xj - aj)

 =2 + 2--2[Exixj -aiaj].

 The expression in the brackets will be calculated

 separately:

 IExx- 1 K K Exixj E E| Xik E XJc) = EXikXjl
 K k=1 1=1

 =k=-1 I=k+l (Uik UjI + Uil Ujk)
 m(m-1)

 [38]

 k= Uik E C=1 UjC ; k=1 Uik Ujk
 m(m-1)

 Taking into account

 m m

 E Ui k= ma1, E ULk= maj,
 k=1 k=1

 we get

 aiaj - (1/mr) I= Uik Ujk
 E (xixj )-aiaj = rn-
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 AGRICULTURAL EXPERIMENTS 471

 Thus if we denote by r the correlation coefficient between

 the yield of two varieties on the same plot

 (1/M) k= Ui -Ujk -aia
 orUiouj

 we get

 Exixj - aiaj=- rau. au, Ex~x - aa m = - ruuu,

 and for the standard deviation of the difference of the

 two averages we get

 (17) zx2-xj= A2,+8x + _1rau.au,
 (17) r-

 2+ 12 + 2 Kr x~~~~K -Ax.1.

 It is easy to see that t 2 _,j tends to zero with ,ux,, .,,. It is
 of interest to see the relation between the standard

 deviations of the differences of the partial averages com-

 puted using formulas (6), (12) and the above ones. [For-

 mula (12) states that the variance of the difference of
 two independent random variables is the sum of their
 variances.] Let us denote

 a .2

 2 ~~2 R2+R2 RXi= _1 R xi_x, R2i + R
 Xi K - i Xi*

 [39]

 Of course

 .Uxi-Xj = Rx2 + RX2j + _ RxiRx,]
 2 2 VR

 xi-- [RXi + X-2rRxiRx I.

 [The right-hand side is really an estimate of the left-

 hand side.] It is easy to see that

 Rx2 + Rx2-2rRx,Rx > ,

 since

 Rxi + Rx?j- 2RXiRxj = (Rx, ? RX0)2 2 0, r< 1.

 Therefore we conclude that

 A2. .ix < R 2._ .

 We can further determine that for given Rx, RXJ the
 variance x.i-x increases as v and r increase.

 We achieve the largest value of the ratio

 2

 ALxi-xj

 q R2

 =1- 2 ~2

 only if

 Rxi Rxjr = 1,

 when

 q = 1, Ax,-xj= Rx=-xj-

 The smallest value of this ratio q is equal to zero, which
 can be achieved when

 Rxi = Rxj, r = -1, v = 2.

 In this case,

 q0, ? 82j=0?, B 2 2R 2 0, Axi- R~~xi-x . Xi,

 [40]

 We see that the standard deviation of the difference of

 partial averages computed using the standard formulas

 is usually too large. It can be conjectured that in many
 cases this has led to the observed difference

 being thought a random fluctuation, when in fact it
 exceeded many times the value of the standard deviation
 computed using the correct formula, i.e., in cases when a
 real difference between the yields of the two varieties
 being compared may be regarded as existing.

 When applying (17) there is a difficulty, since we do
 not have a direct way of calculating r. In cases where it

 can be assumed that the two varieties being compared
 react in the same way to the soil conditions, we should

 take r = 1. [This corresponds to what is frequently termed
 unit-treatment additivity; see, e.g., Kempthorne, 1952,
 Cox, 1958, and Holland, 1986.] If we want to use the
 value of r computed through experiment, we will face the
 problem of introducing some assumptions about the na-
 ture of the variation of soil conditions over the field and

 the distribution of plots which are sown with comparable
 varieties. I hope to return to these questions in one of

 my future papers. They lead to a different design which
 ensures greater precision.

 For the time being, we will conclude that since it is

 impossible to calculate directly an estimate of r, it is
 necessary to take r = 1; the method of comparing varieties
 or fertilizers by way of comparing average yields from
 severalparallelplots has to be considered inaccurate.

 Returning to the problem of determining the value of
 the true yield, we conclude that we are interested pri-
 marily in the true value of the difference between the
 yields of two varieties. Rejecting the assjimption of in-
 dependence of experiments, we cannot use theorem 2 [a
 standard form of the central limit theorem], which, al-
 though it has been generalized [here Neyman refers to
 Markov, 1913, for the exposition of an unpublished result
 of S. Bernstein] to some cases of dependent experiments,
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 472 J. NEYMAN

 does not apply to the case we are considering here. From
 these explanations it follows that it would be safe to
 adopt the following definitions. By the term "true value"
 of the difference of the yields of two varieties, sown on K
 selected plots, we mean a

 [41]

 number A associated with the difference of the observed

 partial averages Xi - Xj in such a way that the probability
 P, of preserving the inequality

 I - X- A I<tac,i-xj

 is greater than

 for all t > 0.

 We can determine empirically that the difference of
 partial averages of the plots sampled shows a fair agree-
 ment with the Gaussian law distribution. This encour-
 ages us to name the true difference in yields of two
 varieties a number a associated with the difference of the

 corresponding partial averages, under the condition that

 the probability of preserving the inequality

 Tl < Xi -Xi - < T2

 equals

 1' [J;T2 exp( t 2 dt,

 where,

 Xi-Xi m(K K [2+j rM-K
 and T1 < T2 are arbitrary numbers. [A misprint (or

 inconsistency) in the preceding equation has been elimi-

 nated; cf. formulas (16) and (17).]

 We should remember, however, that this definition is

 not properly justified.

 Of course everything that has been said about the

 comparison of varieties applies to the comparison of
 fertilizers.

 [42]

 Comment: Neyman (1923) and
 Causal Inference in Experiments and
 Observational Studies
 Donald B. Rubin

 Dorota Dabrowska and Terry Speed are to be most
 warmly thanked for bringing this fundamentally im-
 portant but previously recondite early work of Jerzy
 Neyman to the attention of the statistical community.
 It is an honor to be asked to discuss this docu-
 ment, which reinforces Neyman's place as one of our
 greatest statistical thinkers and clarifies the debt
 all modern statisticians interested in causal inference
 owe to Jerzy Neyman. There are several specific
 contributions in this article (hereafter referred to as
 Neyman, 1923) that I feel are particularly noteworthy.
 To delineate these for my discussion, I first provide a
 brief summary using a mix of Neyman's notation and
 more standard current notation. I then discuss Ney-
 man's original definition of causal effects in random-
 ized experiments, extensions of it to experiments with
 interference between units and versions of treatments,

 and further extensions to observational studies. Three

 Donald B. Rubin is Professor and Chairman, Harvard

 University, Department of Statistics, Science Center, 1
 Oxford Street, Cambridge, Massachusetts 02138.

 other contributions in Neyman (1923) are also ana-
 lyzed: his proposal for the completely randomized
 experiment, his proposal for using repeated-sampling
 evaluations over randomization distributions, and his
 specific results on variance estimation in the com-
 pletely randomized experiment. Throughout, I at-
 tempt to relate these contributions of Neyman's to
 proceeding and contemporary work of R. A. Fisher
 and others, and to subsequent work, including my own
 cited in the Dabrowska and Speed introduction. My
 conclusions regarding the relationship of Neyman
 (1923) to other work are briefly summarized in the
 final section.

 1. AN OVERVIEW OF NEYMAN (1923)

 Neyman begins with a description of a field experi-
 ment with m plots on which v varieties might be
 applied: "- * * Uik is the yield of the ith variety on the
 kth plot"; Uik is a "potential yield" (Neyman's term)
 not an observed yield because i indexes all varieties
 and k indexes all plots, and each plot is exposed to
 only one variety. Throughout, the collection of poten-
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